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Abstract. We show that the dependence of the critical temperature T, on the space 
dimension d of the q-state Potts model can he fitted by straight lines, with slopes predicted 
by a long-range interaction mean-field theory with broken permutational symmetry: 
Yq 2 YmOsPq_,. By means of phenomenological arguments we ‘reconstruct’, in terms of 
the above mean field, the (d, T,) plots with a high degree of accuracy. The model suggests 
a factorisation of the partition function near or at the critical point. Predictions, implied 
by this ansatz, are given on the behaviour of the specific heat exponent a and the latent 
heat L which are corroborated by ‘data’ presently available in the literature: q = 4 with 
2.5 2 for L. d 6 for a ,  and q 3 4 with 1 s d 

1. Introduction 

When dealing with critical exponents of phase transitions, the availability of precise 
empirical data and numerical work suggested a scaling behaviour near the critical 
point. Later on, the observed universality was justified rigorously by renormalisation 
group techniques which provided a better understanding of the dependence of the 
values of the critical exponents on the space dimension d and the dimension n of the 
order parameter (see e.g. Pfeuty and Toulouse 1977). Guided by the history of the 
critical exponents, it seems to us that a search for empirical relations for the critical 
temperature T, might be fruitful for further theoretical developments. It was in this 
spirit that we analysed in a previous note (Cocho er a1 1982, which we shall refer to 
as I): the dependence of T, on d for the Ising model on hypercubic lattices. The 
available analytical and numerical data for T, turned out to be fitted with a remarkable 
accuracy by two straight lines in the (d, T,) plane, suggesting the presence of a 
‘restricted’ form of self-duality for the king model when d s 4 and a cluster approxima- 
tion mean-field (MF) behaviour with anisotropic interactions for d > 4. 

In this work we extend the above analysis to the q-state standard Potts model 
(Potts 1952, Wu 1982) in a d-dimensional hypercubic lattice ( q  = 2 corresponding to  
the king model), and produce a ‘mean field theory with symmetry breaking’ (MFSB) 

which exhibits a wide variety of the critical properties of the Potts model. In 0 2 we 
present some known (Wu 1982) results of the critical behaviour of the Potts model 
from which we develop in 0 3 the above mentioned MFSB. In § 4 we compare the 
results from this MFSB with the data of § 2, analysing the behaviour of the Potts model 
for different q, and obtain a formula for the dependence of the critical temperature 
T, on d. The line of reasoning behind this formula is then extended to the analysis of 
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the behaviour of the critical exponent for the specific heat and of the latent heat. The 
most significant result of our work, which is developed in § 4, is that the critical 
behaviour of the q-state Potts model in dimension d may be accurately described by 
partitioning the space into subspaces of various dimensions and using a different 
mean-field model in each subspace. All of these coexisting mean-field models are 
assumed to have the same critical temperature. For given q, the critical temperature 
is assumed to be a continuous piecewise linear function of the dimensionality, the slope 
of which is determined in each range of d by only one of the coexisting models. The 
model chosen is said to be dominant in that range. 

Finally, in 8 5 we summarise and discuss our results pointing out the predictive 
component of the MFSB and the implications of a conjecture presented there. 

2. Summary of numerical and analytic data 

The Potts model has been a subject of increasing research interest in recent years (cf 
Wu 1982 for a comprehensive updated review). In this paper we shall be refering to 
the q-state standard Potts model (Wu 1982) which is described by the ‘Hamiltonian’ 

where ut(ai = 1, 2 , .  . . , q )  is a spin variable on the site of a d-dimensional hypercubic 
lattice which can assume q-values, E is a coupling constant, and the sum runs over all 
nearest-neighbour pairs, each pair is counted only once. Whenever two nearest- 
neighbours are in the same state there is an interaction energy of - E ,  otherwise it is zero. 

Following the phenomenological approach set out in 1, we shall firstly concentrate 
on the dependence of K,’ = k,T,/E (k,=Boltzmann’s constant) on d. (Note that 

1 J ,  , 1 , , , , 1 ,,o-l 
0 2 4 6 8 

d 

Figure 1. Plot of the critical values K,’ (d )  for various q-values of the Potts model taken 
from tables I1 and I11 of Wu (1982) and table I of Cocho et a1 (1982). The straight lines 
are to be taken only as a guide to the eye. 
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K;' corresponds to 2X;' of I, i.e. 25  = E ) .  For this purpose we have plotted in figure 
1 the values currently available in the literature (Wu 1982) of K,' for different d 
and q, estimated either by series, Monte Carlo and renormalisation group analysis, or 
from duality considerations (when d = 2, K,' can be obtained from duality arguments 
for arbitrary q ;  see Potts 1952 and Wu 1982). 

From figure 1 we see that, just as in the Ising case, the dependence of T, on d for 
a given q appears to be linear (the lines sketched in figure 1 are to be taken only as 
a guide to the eye). 

In I we remarked that for q = 2, below d ,  = 4 the linear dependence could be 
understood in terms of a 'restricted' self-dual behaviour, while for d > 4, where the 
transition is MF-like, the linear dependence corresponded to an anisotropic MF cluster 
approximation behaviour. For general q, the value d, (q) ,  above which a mean-field 
dynamic prevails, is expected to fall on the scheamatic curve of figure 2 (see Nienhuis 
et a1 1981 and Wu 1982). From the comments presented in I, it follows that for 
d > d,(q) some type of MF theory of an 
behaviour. 

anisotropic character might describe the T, 

Figure 2. Schematic plot of the critical dimension d J q )  beyond which, for a given q, a 
mean-field behaviour prevails (Wu 1982). For q > 2, d,(q) is the value of d at  which the 
Potts transition changes from continuous to first-order (Nieunhuis et a1 1981). The full 
circles are  known results taken from Wu (1981) while the open circles are  results of the 
variational renormalisation group calculations of Nienhuis et al (1981) .  

3. Mean-field theory with symmetry breaking 

Several MF theories have been proposed for the study of the q-state Potts model (see 
Wu 1982), in this section we shall develop a MF treatment which in an extension of 
the one discussed in the review by Wu (1982). 

We start from the infinite-range interaction MF Hamiltonian (Husimi L953, Temper- 
ley 1954, Kac 1968) 
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for a system of N spins, each of which interacts with the other N - 1 spins via an equal 
strength of y / N ,  y being the coordination number of the lattice ( y = 2d for hypercubic 
lattices). Following Wu (1982), if we define xI as the fraction of spins that are in the 
spin state i = 1, 2 , .  . . , 4, subject to the constriction: 

C X l = L  
I 

then to leading order in N, the energy and entropy per spin are 

E / N = - i y &  C x f ,  
I 

(3)  

(4)  

and the free energy per spin A, is given by the expression 

where K = E /  kBT, with E > 0 for a ferromagnetic-type interaction. 

look for a solution in the form of 
Since from I we expect our MF approximation to be of an anisotropic nature, we 

Xa = ( l / q ) [ l +  ( 4  - m)sI,  

Xb = ( l / q ) [ l  - ms1, 

a = 1 , 2 , .  . . , m 

b = m + l ,  . . . , q  
( 7 )  

where 1 s m S q is a positive integer which acts as a symmetry breaking factor and 
the ‘order parameter’ s, 0 s  s S l / m  is to take the value so which minimises the free 
energy. We shall refer to the above choice of spin fractions as the [m, q - m] partition. 
(The infinite range MFSB with the [ l ,  q - 11 partition corresponds to the cluster type 
MF mentioned in I;  cf Nakanishi and Stanley 1981.) 

From (6) and (7) we have 

= (m/q j [ l  + ( q -  m ) s ]  In [l + ( q -  m)s]+[(q-  mj/q][ l -  msl In [ l -  msl 

- 4 N m ( q -  m)/q1s2 (8) 

3 ’ ( s )  =Em(q-m)/ql( ln{[ l+(q-  m ) ~ l l ( 1 - - s ) l - ~ K s ) .  (9) 

and 

At  the phase transition, whenever q >  1, s and K take the MF critical values syF 
and KyF = E /  kBTFF which satisfy (Wu 1982) 

A’( syF) = A(sYF)  = 0 ,  

syF = ( q  - 2m)/  m ( q  - m) 

(10) 

i.e. 

(11) 
and 
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Expression (12) gives us the dependence of the MF critical temperature TyF on 
d, i.e. 

TYFkg/  E I (KyF)-l  = (4 - 2 m ) d /  m(q - m )  In [ ( q  - m)/  m ] .  

LMF = ~ ( q  - 2 m ) ’ d / q m ( q  - m ) .  

(13) 

A further quantity which can be calculated directly from (1 l ) ,  (12) and (5) is the 
MF latent heat per spin LMF: 

(14) 

A few remarks concerning equations (11) to (14) are appropriate at this stage: 
(i) If m +&, then from ( l l ) ,  (12) and (5) we have that syF ’ 0 ,  rKyF + q  and 

LMF -+ 0. 
(ii) For the q = 1 case, we can take equations (8) and (9) with q = 1 + E and m = 1, 

i.e. the formal partition [ l ,  1 + E ] ;  impose the criticallity condition A(sFF) = A’(sYF) = 0 
and at the end take the limit E + 0. The final result being, just as in the above case, 
syF=Oand  y K , = q = l .  

(iii) Cases (i) and (ii) are MF continuous transitions; otherwise, i.e. m # &q and 
q # 1 ,  we have MF first-order transitions. 

(iv) Equations (12), (13) and (14) are invariant under the transformation [m,  
q - m ]  + [ q  - m, m ]  i.e. the MF critical temperature and latent heat of the partitions 
[ m, q - m ]  and [ q  - m, m ]  are the same. When dealing with syF, the above transforma- 
tion sends spF to (-spF), as expected. 

(v) The following scaling relations hold 

where the functional form of f, h and w follows directly from equations ( l l ) ,  (12) 
and (14) respectively, and p = hw. 

4. Dependence of critical properties on space dimensionality 

So far we have established a MF theory with a symmetry breaking factor m, and derived 
within this approximation expressions for the critical quantities sYF, TFF and LMF. 
In order to obtain information on the critical properties for the ‘exact’ (fully interacting) 
q-state Potts model, we shall proceed along the lines set out in I. 

4.1. Critical temperature 

In I we showed that the slope of T, as a function of d, for d 3 d, (2) = 4, is remarkably 
well approximated by an anisotropic MF theory. On the other hand, we know from 
equation (13) the slope of T Y F ,  for the general q-state Potts model, as a function of 
d for every partition [m, q - m ] .  In the following, we shall therefore discuss how much 
information on the critical behaviour of the Potts model we can extract from the MFSB, 
by considering the case of each q (for which we have found in the literature numerical 
values for T,) separately. 

4.1 .1 .  q =2. This is the Ising model studied in I. For this case we know that, whenever 
d 2 d,(2) = 4, T, can be fitted by the expression (see equation (12) of I) 

T,kB/E = K,’ = 3/ln( 1 +&) + ( d  -4) = [3/4 In( 1 + h ) ] d , ( 2 )  + ( d  - d , ( 2 ) ) ,  (16) 
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where the first term in the last member of (16) can be thought of as a contribution 
from the non-mean-field region (region I1 of fi ure 2) expressed in terms of an ‘effective 

tion from the mean-field region (region I of figure 2). 
mean-field’ (EMF) type coupling 3 & / 4  l n ( l +  J -  2), and the second term is the contribu- 

In the context of the MFSB the following observations can be made. 
(i) We expect it to describe the critical behaviour of the system in region I of figure 

2, i.e. above d = d,(2)  = 4. 
(ii) The only partition is [ l ,  11, which corresponds to a MF continuous transition 

(recall remarks (i) and (iii) of § 3). 
(iii) When dealing with continuous phase transitions, it is common knowledge 

(see Pfeuty and Toulouse 1977) that there is a dimension dJ such that Josephson’s 
scaling law, vd = 2 - a ,  is obeyed by exponents with their ‘classical’ or MF values. 
Given the above remarks, the MFSB should hold for d z d d , ( q ) ,  where d J (q )=4  
for q >  1. 

From these observations and remark (i) of 0 3 ( yK,  = q for m = i q )  we expect, for 
d > 4 ,  the slope of K,’ as a function of d, to be 1;  which is in agreement with (16) 
and is plotted in figure 3. 

4.1.2. q =4. Just as in the q = 2 case, we shall be concerned with the behaviour of 
the Potts model in region I of figure 2, i.e. for d 3 d, (4) = 2. Since for q = 4 we have 
the two distinct partitions: [l ,  31 and [2,2],  there seems to be some ambiguity in the 
choice for the slope of K,’ given by equation (13). At first sight, the [ l ,  31 partition 
seems to be the best choice since the transition which will take over is the first transition 
crossed when one comes from high temperature. However, it has been argued (de 
MagalhZes and Tsallis 1981) that for large d the Potts model seems to approach a 
continuous transition behaviour. Since dJ(4) = 4 we might expect that the [2, 21 
partition (corresponding to a continuous phase transition) should contribute to the 
phase transition when d > d,(4). Our results of § §  4.2 and 4.3 as well as the comparison 
with the available numerical and recent renormalisation group calculations (see 
Indekeu et a1 1982) suggest that this contribution is dominant in a subspace of dimension 
d’ = d - dJ(4), with d > d,; the main point being that we shall envisage our system as 
composed of a ‘mixture’ of coexisting MF theories (corresponding to different partitions 
and the EMF) which hold in subspaces of smaller dimensionality and that come to 
criticality at the same temperature. We shall therefore propose the [l, 31 slope of 
2 /3  I n 3  (cf equation (13)) from d , ( 4 ) = 2  to d,(4)=4,  and the [2,2] slope of 1 
for d z d ~ ( 4 ) = 4 .  

The starting point in figure 3 for the [ 1, 31 branch is known from the duality relation 
(Potts 1952 and Wu 1982). 

(17) 

valid for d = 2 and aribtrary q. For the [2,2] branch we check that the d = 4 starting 
point satisfies the requirement that any MF critical temperature is an upper bound to 
the ‘true’ critical temperature (this has been rigorously proved for the continuous 
transition of multicomponent Heisenberg-type classical ferromagnets by Simon (1980) 
and Brydges et a1 (1982)). The broken line, corresponding to the [2,2]  partition, 
traced in figure 3 for q = 4 and d 2 4 is the MFSB least upper bound. For this case, 
the upper bound is a remarkably good fit to the ‘true’ values of T,. 

Summing up, we have for q = 4, using equation (1 7) and (1 3) the following formula 

K , ’ ( d ) s l / l n 3 + ( 2 / 3 l n 3 ) ( d - 2 ) ,  2 s d < 4  (18) 
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and 

K ~ ' ( d ) ~ l / l n 3 + 4 / 3 l n 3 + ~ ( d - 4 - ( ) ,  d 2 4  (19) 

with 6 = 2 / l n 3 + 8 / 3 l n 3 - 4 .  
We have written (18) and (19) so as to emphasise the following general behaviour 

where n(q,  d)  is a non-negative integer, di+,(q)  > di(q),  d 3 dn(q,d)+l(q)  and do(q) E 0. 
For the q = 4, d > 4 case, n(4, d )  = 1; the W1 = 1/2  In 3 term with d1(4) = dJ4) = 2 

and 6,(4) = 0 corresponds to the EMF behaviour mentioned in § 4.1.1; the i = 1 term 
given by W2(4) = 213 In 2, d2(4) = d,(4) = 4 ,  t2(4) =0, is the [ l ,  31 first-order phase 
transition contribution; and the n(4, d )  + 2 = 3 term is the [2,2] continuous transition 
contribution with W3(4) =+ and t3(4) = .$ of equation (19). 

Notice that if we look at the plot of (18) and (19) taken as equalities, we observe 
that there is a remarkable agreement with the available numerical data. 

4.1.3. q = 3. For this case, we only have the [ 1,2]  first-order partition and dc( 3) = 2.2 
(Nienhuis et a1 1981). We therefore expect a straight line (full line in figure 3) of 
slope 1/2 In 2 in the d L dc(3) region (region I of figure 2) lying below the MF upper 
bound K,' = d / 2 l n 2 .  In figure 3 we have plotted this upper bound (broken line) 
and shown that the available data conform with the above predictions, however, more 
numerical data are necessary in order to check the behaviour predicted by the MFSB. 

4.1.4. q = 6. When q = 6 the Potts MFSB has three distinct partitions: [ l ,  51, [2,4] and 
[3,3]. Since dc(6) < 2 (Nienhuis et a1 1981), the exact d = 2 result falls within the MF 

region I of figure 2. Because of the upper bound property of the MF critical tem- 
peratures, the [ l ,  51 branch is the only one that can pass through the dual point. An 
analysis similar to the q = 4 case leads us to expect that the [3,3] branch will hold for 
d > d,(6) = 4. 

In figure 3 we have drawn the three branches for the q = 6 case. The [l, 51 branch 
(full line) gives a slope which agrees with available numerical data. The [2,4] and 
[3,3] branches (broken lines) are proposed as upper bound MF results. Since we have 
so far found no apriori criteria for the determination of the position of the discontinuity 
between the [l, 51 and [2,4] branches, in figure 2 this discontinuity has been placed 
arbitrarily. 

4.1.5. q=1. This is a limiting case which corresponds to the percolation problem. 
From remark (ii) of § 3 we know that within the MF approximation it corresponds to 
a continuous transition and from remark (i) of the same section we have 

K,' =2d.  (21) 
Since dc( 1) = 6 = d,( 1) (Toulouse 1974, Pfeuty and Toulouse 1977, Kirkpatrick 

1976, Gaunt et a1 1976) we expect (21) to be an upper bound for K i ' ( d )  for all d, 
and 2 to be a good approximation for the slope above six dimensions. In figure 3, 
both assumptions are shown to hold; however, more numerical data would provide a 
better check. Notice that for d G 6 the EMF behaviour hypothesis is strongly corrobor- 
ated (cf figure 1 and the chain line on figure 3). 



1088 G Cocho and G C Martinez-Mekler 

d 

Figure 3. Plot of the critical values of K-’  = ~ , T / E  as a function of d for several q values 
of the Potts model. The broken lines (denoted by [ m ,  q - mIMF) correspond to the 
mean-field behaviour of the MFSB theory [m, q - m ]  partition given by equation (13). 
These lines are upper bounds to the ‘true’ critical temperature. The full lines, labelled by 
[m, q - m ] ,  are the predictions for the behaviour of the ‘true’ critical values of K , ’ ( d )  
given by the MFSB via the phenomenological arguments of $ 4. (The notation [0, 11 stands 
for lim,,,[E, 1 - E ] . )  The chain lines correspond to the conjectured effective mean-field 
(EMF) behaviour. For q = 2 this line is given by equation (4)  of Cocho et a1 (1982). The 
q = 1 chain line is only given as a guide to the eye. The full circles are the values of K,’ (d )  
given in figure 1. 

4.2. Specific heat exponent a 

So far, in the analysis of the critical temperature behaviour, we have mentioned that 
for a given q-state Potts model, there are dimensional ranges where a partition 
[m, q - m] appears to be dominant, and that some of these partitions correspond to 
first-order transitions, while others are continuous ones. On the other hand, there has 
been a constant preoccupation in the literature (Wu 1982, Nienhuis et al 1981, Livi 
et a1 1983, de Magalhies and Tsallis 1981) concerning the type of phase transition of 
the q-state Potts model at a given dimension. We find, for example, that for the 4 = 4 
Potts model, which is expected to exhibit a MF type first-order transition with a latent 
heat above d J 4 )  = 2 (Wu 1982), values for the critical exponent a have been calculated 
numerically (Ditzian and Kadanoff 1979). We believe that this situation can be 
understood by extending the main phenomenological result of the critical temperature 
behaviour contained in equation (20) to other thermodynamic quantities, for example, 
the internal energy. The conjecture is that the internal energy can be written as a sum 
of the contributions from different MFSB partitions plus what we have called the EMF, 

i.e. 
n ( q , d )  

1=0 
U ( q ,  d )  = u , + , ( q ) [ d t + , ( q )  - d,(q) l+ U n ( q . d ) + Z ( q ) [ d  - d n ( q , d ) + l  (4119 (22) 
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where u(q,  d )  is the internal energy of the q-state Potts model and uz+l(q) ,  i z  1, is 
the contribution from the ith partition ‘weighted’ by the range [di+,(q)-di(q)] of 
dimensions where it is dominant, and u,(q)  is the EMF region contribution (recall that 
d,(q) = 0). The  dimensions d,, d, and the number n(q, d )  satisfy the conditions specified 
for equation (20). 

The  q = 4, d > 4, case would then be: 

~ ( 4 ,  d )  = u1(4)[dc(4) -01 + u2(4)[dJ(4) - d,(4)1+ ud4)[d - W)1, (23) 

the u1(4) term corresponding to  the fully interacting system we have modelled by the 
EMF, u2(4) to the first order MF behaviour of the partition [ l ,  31 and u3(4) t o  the 
continuous transition MF partition [2,2]. We are  not implying that for example, a t  
d = 5, the system undergoes a MF continuous transition, but rather that equation (23) 
indicates an accumulative effect: the system retains some of the u,(4), u2(4) and u3(4) 
behaviour. From the definition of the specific heat, we would then expect that at  d = 5 
the u,(4) term would be the only one  to give a contribution to the value of cy, since 
u2(4) will give no  divergence as T + T, (first-order MF), and for u3(4) we have a jump 
discontinuity ( MF continuous transition). 

W e  can thus envisage the behaviour of the q = 4 Potts model for d = 5 as being 
described by a [l, 31 MF Potts model in a ‘two-dimensional subspace’ ‘coexisting’ with 
an EMF which holds in another ‘two-dimensional subspace’ and a [2,2] MF model in 
the ‘remaining one dimension’. All these mean-field behaviours coexist and enter 
criticality at  the same temperature. 

We  are  therefore stating that for q = 4 and d 3 2, the specific heat exponent will 
take its d = 2 value, which has been conjectured to be 3 (there is firm numerical support 
for this conjecture; Wu 1982). This behaviour is consistent with the numerical calcula- 
tions of Ditzian and Kadanoff (1979), which give the mean-weighted average value 
of 0.662 * 0.034 for 2.5 S d 6 6. Numerical results for a ,  for various values of d and 
q, would provide us with a testing ground for the behaviour implied by equation (23). 

4.3. Latent heat L 

For the latent heat the picture again is similar to that of equation (20): 
n ( q , d )  

I =n 
L(q, d )  = c LI+  I(q)[d~+l(q)-d,(q)l+Lfl,q,d,+*(q)[d-d,,q,d,+l(q)l, (24) 

where the subscript i ha5 the same role as in equations (20) and (23). L,+l with is 1 
being the latent heat of the ith partition of the MFSB given by equation (14) divided 
by d, and L, (q )  that of the EMF region. In equation (24), n(q, d ) ,  d, and d satisfy the  
requirements imposed for equation (20). 

If we now look again at  the d = 5, q = 4 case, we have that L (4,5)  given by 
equation (24) reduces to  

(25) 
since the continuous transition regions d o  not contribute to the latent heat. Notice 
that this line of reasoning provides an explanation for the presence of critical exponents 
in first-order (L # 0) transitions. 

Fortunately, for the latent heat there is a testing ground for the conjecture behind 
equation (24) presently available in the literature on the Potts model: let us focus our  
attention on the region in figure 2 corresponding to  q 3 4 and d s 2. Since within this 

L(495) = L2(4)[dd4) - dc(4)I = 3. 



1090 G Cocho and G C Martinez-Mekler 

region, the points to the left of the curve sketched in figure 2 are expected to correspond 
to continuous transitions while those to its right to first-order transitions (Nienhuis et 
a1 1981), then equation (24) for q 2 4 and d = 2 reads: 

(26) 

where d l (q)  = dc(q) indicates the position of the above mentioned curve and L 2 ( q )  is 
the [ l ,  4-11 case of equation (14) divided by d. In equation (26) we are only left 
with the L 2 ( q )  term because the partition [ 1, q - 11 is the only one which satisfies the 
condition that the MF critical temperature is an upper bound to the ‘true’ temperature 
for d = 2. Also in (26) we have made use of L l ( q )  = 0. 

With equation (26) we can now determine the value of d , (q)  because there is a 
closed expression for L(q, 2) (Wu 1982). From equations (5.11), (5.12) and (5.15) 
of the review of Wu (1982)-there is a factor 4 missing in expression (5.11) if we 
identify E~ with E ;  (Wu, private communication)-we have: 

u q ,  2) = L,(q)[2- d,(q)l, 

L(q, 2) = ~ ( 1  +q-”,)g(q) tanhfe = & F ( q )  (27) 
- 

where cosh 6 = f J q ,  6 2 0  and g(q)=II r==, ( tanh  ne)‘. 
Substituting (14) and (27) in (26) we obtain, for q s 4 :  

dc(q) = di ( 4 )  = 2 - F ( q ) q ( q  - 1 I /  ( q  - 2)*. (28) 

The curve corresponding to equation (28) (see figure 4) passes very near the points 
calculated by Nienhuis et a1 (1981) using renormalisation group techniques, and has 
the qualitative behaviour expected beforehand (i.e. the curve on figure 2). Notice 
tha t ,d l (q)+  1 whenq+qaspredictedbyNienhuiserul(l981) andLivi eta1 (1983). 

Figure 4. Plot of the values of 4 ( 9 )  = d,(q) for 9 2 4 predicted by equation (28) .  The 
full and open circles are the data plotted in figure 2. 

Equation (28) is one of the main results of this paper. It gives support to the 
conjectures behind equations (20) (taken as an equality), (22) and (24), and is indicative 
of the advantages of the approach we have been following: our knowledge of L(q, 2) 
allows us to determine d,(q) for all d s 2 and q 3 4 (all this in terms of MF theories). 

Again, numerical values for L(q, d )  and d,(q) would be useful to give a more 
precise check on the validity of our assumptions. 
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5. Summary and conclusions 

In this paper, by focusing our attention on the dependence of the critical temperature 
K;' (q ,  d )  on space dimensionality d for the the q-state Potts model, we have observed 
from numerical data an essentially linear behaviour by parts (figure 1). We have 
constructed, prompted by a previous analysis for the Ising model (Cocho et a1 1982), 
a MFSB that reproduces within the MF region (region I of figure 2),  the slopes of 
K;' (q ,  d )  for all q for which we have found numerical results (figure 3). By means 
of straightforward arguments we have established inequality (20), which taken as an 
equality gives an excellent fit for the numerical data. This phenomenological result 
has a predictive nature, at least as an upper bound. 

If we analyse, with the above line of reasoning, the behaviour of the internal energy 
and latent heat (equations (22) and (24)),  we can provide an explanation for the 
coexistence of critical exponents and latent heats, and of the dependence of the critical 
exponent a on dimensionality for the q = 4 Potts model. 

With the aid of the MFSB, we have been able to obtain the curve of d,(q) (equation 
(29)) for 4 2 4 and d G 2 from the values of the latent heat for d = 2. This result gives 
support to the conjecture involved in equations ( 2 0 ) ,  (taken as an equality), (22) and 
(24), and shows the calculational advantages of the approach we have adopted. Further 
numerical work is desirable as a check to the behaviour predicted by equation (28). 
The results so far obtained suggest that near or at the critical point the partition 
function, for the d-dimensional q-state Potts model, might factorise as a product of 
MF partition functions of lower dimensionality. 

The main point we intend to put across in this paper is that near or at the critical 
temperature the behaviour of the exact, fully interacting system, can be remarkably 
well approximated in terms of MF theories which exhibit the simplicity of the description 
of the system under these conditions. Further analytical and numerical work is called 
for in order to strengthen or limit the validity of the points raised in this work. 
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